
17 570684 Ch12.qxd 3/31/04 2:51 PM Page 158

158 Part III: Giving Your Programs the Ability to Run Amok

Save the file back to disk.

Compile TAXES.C. Run the final result. The output is the same because the
program hasn’t changed (and assuming that it hasn’t gotten any warmer and
you haven’t grown any taller in the past few moments). What you have done
is to create an if-else structure, which is another way to handle the decision-
making process in your C programs.

� The else keyword is a second, optional part of an if cluster of state
ments. It groups together statements that are to be executed when the
condition that if tests for isn’t true.

� Or else what?

� Alas, if you enter the same values as in the old program, you still owe
the same bundle to Uncle Sam.

Covering all the possibilities with else

The if-else keyword combination allows you to write a program that can
make either-or decisions. By itself, the if keyword can handle minor deci
sions and execute special instructions if the conditions are just so. But when
if is coupled with else, your program takes one of two directions, depend
ing on the comparison if makes. Figure 12-2 illustrates how this can happen.

printf("whatever");

if(chins>3)
{
 printf("Where is your neck?");

}
else
{
 printf("My, but what a slender neck.");

}

printf("something else");

Program
execution

?

False

True

Figure 12-2:
How if and
else affect

a program.

